HYBRIDIZATION OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHM WITH COEVOLUTION FOR ENEMY TEAM IN MS. PAC-MAN GAME
DOI:
https://doi.org/10.47252/teniat.v2i1.228Keywords:
Artificial neural network, Competitive coevolution, Game artificial intelligence, Ms. Pac-man game, Multiobjective evolutionary algorithmAbstract
Abstrak
Kini, semakin ramai penyelidik telah menunjukkan minat mengkaji permainan Kecerdasan Buatan (KB).
Permainan seumpama ini menyediakan tapak uji yang sangat berguna dan baik untuk mengkaji asas
dan teknik-teknik KB. Teknik KB, seperti pembelajaran, pencarian dan perencanaan digunakan untuk
menghasilkan agen maya yang mampu berfikir dan bertindak sewajarnya dalam persekitaran permainan
yang kompleks dan dinamik. Dalam kajian ini, satu set pengawal permainan autonomi untuk pasukan hantu
dalam permainan Ms. Pac-man yang dicipta dengan menggunakan penghibridan Evolusi Pengoptimuman
Multiobjektif (EPM) dan ko-evolusi persaingan untuk menyelesaikan masalah pengoptimuman dua objektif
iaitu meminimumkan mata dalam permainan dan bilangan neuron tersembunyi di dalam rangkaian
neural buatan secara serentak. Arkib Pareto Evolusi Strategi (APES) digunakan, teknik pengoptimuman
multiobjektif ini telah dibuktikan secara saintifik antara yang efektif di dalam pelbagai aplikasi. Secara
keseluruhannya, keputusan eksperimen menunjukkan bahawa teknik pengoptimuman multiobjektif boleh
mendapat manfaat daripada aplikasi ko-evolusi persaingan
Abstract
Recently, researchers have shown an increased interest in game Artificial Intelligence (AI). Games
provide a very useful and excellent testbed for fundamental AI research. The AI techniques, such as
learning, searching and planning are applied to generate the virtual creatures that are able to think and
act appropriately in the complex and dynamic game environments. In this study, a set of autonomous
game controllers for the ghost team in the Ms. Pac-man game are created by using the hybridization
of Evolutionary Multiobjective Optimization (EMO) and competitive coevolution to solve the bi-objective
optimization problem of minimizing the game's score by eating Ms. Pac-man agent and the number of
hidden neurons in neural network simultaneously. The Pareto Archived Evolution Strategy (PAES) is used
that has been proved to be an effective and efficient multiobjective optimization technique in various
applications. Overall, the results show that multiobjective optimizer can benefit from the application of
competitive coevolutionary