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ARTICLE INFO ABSTRACT 

 Good oil palm seedlings planted in Malaysia can enhance the nursery area, the 
economy, and rural employment. Nitrogen (N), potassium (K), \and magnesium 
(Mg) deficiencies in oil palm seedlings could have an adverse effect on growth 
and seedling quality. In contrast, excess fertiliser in oil palm seedlings could 
reduce macronutrients and soil organic matter levels. Moreover, various diseases 
appear on the oil palm seedling leaves resulting from nutrient deficiencies. Oil 
palm seedlings with nutrient deficiencies were more susceptible to pathogens and 
diseases than healthy oil palm seedlings. Thus, image processing made it possible 
to quickly and accurately control oil palm seedlings' growth and avoid diseases. In 
this research study, image processing was proposed to classify nutrient 
deficiencies in oil palm seedling leaves subjected to the three different fertiliser 
rates. The dataset for this research study was collected from a nursery and 
consisted of 868 images classified into four classes (Healthy, Nitrogen, Potassium 
and Magnesium). According to the experiment's findings, the Xception model 
achieved the highest percentage of classification accuracy, 98.60%, within a short 
time. It can be concluded that the proposed implementation of image processing 
for the classification of nutrient deficiencies in oil palm seedling leaves was 
effective. However, more datasets could be added in the future to achieve a better 
balance and enhance classification performance. 
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1. Introduction 

 Cultivating oil palm (Elaies guineensis) is widespread in West Africa, but effectively controlling and fertilising 
large nursery areas poses considerable difficulties. The inefficiency and high expense of traditional manual approaches 
emphasise the necessity for an affordable and easy methodology to analyse the growth of oil palm seedlings. Image 
processing has become an acceptable method, allowing for effective monitoring and fertilisation. 

Previous research findings have investigated the application of machine learning and deep learning techniques 
for the detection of plant diseases [1]. However, conventional approaches necessitated human involvement in the 
collection of data. Recent research conducted by [2] has utilised advanced deep learning models such as AlexNet and 
AlexNet-SVM to automate the process of representing data. This has led to great progress in identifying deficiencies in 
nutrients in oil palm leaves. Image processing techniques have been shown in multiple studies to be useful in enhancing 
agricultural activities by offering non-destructive and precise data about plants. 

https://doi.org/10.70464/mjbet.v1i1.1275
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The studies conducted by [3] and [4] have shown that Convolutional Neural Networks (CNNs) can identify 
nutritional deficiencies. However, there remained difficulties in precisely recognising particular nutrients. Additional 
investigation is required to enhance these techniques and investigate their suitability in other agricultural environments 
and circumstances. 

This research aims to fill these knowledge gaps by creating an image-processing method that can accurately 
categorise nutrient deficiencies in oil palm seedlings across three different NPK treatments. The results provided 
valuable insights for optimising fertilisation techniques, improving seedling vitality, minimising expenses, and 
maximising agricultural productivity. The greater implications include the sustainability of the environment and the 
development of agricultural policies, highlighting the importance of using modern technologies in the field of 
agriculture. Farm experts have the capability to utilise mobile applications that are equipped with machine learning and 
deep learning algorithms in order to capture images of plant leaves. The application utilises image analysis to identify 
and diagnose nutrient deficiencies by examining patterns and characteristics recognised by the trained model. These 
programs offer prompt feedback, recommending modification solutions such as accurate fertiliser treatments. 

2. Materials and Methods 
2.1 Materials 

The materials used in this research included fifteen 3-month-old oil palm seedlings and NPK (16:16:16) 
fertiliser, specifically YaraMila fertiliser (16:16:16). The dataset was collected and captured using a smartphone. The 
models were developed using Python programming 3.8.3 and executed on a Jupyter Notebook with plenty of space, 
sufficient RAM, and a capable Intel(R) Core (TM) i5-4210U CPU @ 1.70GHz 2.40 GHz.   Data was imported into the 
Jupyter Notebook software.  The 3-month oil palm seedlings were purchased from Semaian Gua Musang Sdn Bhd, 
which is located in Gua Musang, approximately 143.0 km from Kota Bharu, Kelantan. The coordinates of the source 
are 4°49’05.2 "N 101°57'24.4"E. They were taken to Kota Bharu for further analysis. Seedlings of oil palm were planted 
into UV polybags that measured 12’ × 15’ and were filled with a soil combination consisting of coco peat, topsoil, and 
rice husk ash. Agricultural wastes such as cocopeat and rice husk ash were chosen for their affordability and 
accessibility. A recent study conducted by [5] found that cocopeat has a remarkable ability to retain water, effectively 
preserving the humidity levels within. Furthermore, the structure of rice husk ash was characterised by high porosity, 
which enhanced both drainage and aeration. When the soil is porous, the roots of oil palm seedlings can easily penetrate 
it, allowing for proper growth. The spacing between planting is 0.40 m × 0.40 m triangular to minimise the impact of 
watering on nearby oil palm seedlings. Each oil palm seedling in a polybag is given a consistent amount of water, 
ranging from 0.25 to 0.50 litres. Watering is done twice a day, once in the morning and once in the evening. The 
seedlings were given time to establish themselves before receiving fertiliser treatments. The oil palm seedlings are 
divided into three different treatments: those with adequate fertiliser, those with a limited amount of fertiliser, and those 
without any fertiliser, according to Table 1. 

 

Table 1: Description of treatments to examine the effect of different rates of NPK fertiliser on growth of oil 
palm seedlings 

 

Treatment T1 T2 T3 

Rate of Fertiliser, 
(g) 

2g 1g No fertiliser 
application 

         Source: [6] 

Small amounts of YaraMila fertiliser were used as NPK fertiliser, which was 2 g and 1 g because oil palm 
seedlings possess different demands on nutrients when compared with mature-grown oil palm plants [7]. Excessive use 
of fertiliser can result in nutrient toxicity, whereas insufficient amounts may not adequately promote optimal 
development. Employing a small quantity ensures that the oil palm seedlings have sufficient nutrients while avoiding 
the potential of over-fertilization. Utilising small quantities of fertiliser is more economical, particularly during the early 
stages of the growth of plants. This is especially crucial in research environments where limitations on funding and the 
effective use of resources are vital factors to consider. 
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2.2 Methodology 
2.2.1 Integrated Image Processing Workflow with Machine Learning and Deep Learning 

Fig. 1 shows an image processing method that started with taking an image using a mobile device and then 
transferring it to a computer for data analysis in a Jupyter Notebook. The image underwent pre-processing steps, 
including resizing and splitting, within the computer. The processed data went through analysis using both machine 
learning and deep learning methods. The deep learning process utilised a Convolutional Neural Network (CNN) and 
various pre-trained models for transfer learning and fine-tuning, such as VGG16, VGG19, InceptionV3, and others, for 
feature extraction and classification. The network's final layers consisted of batch normalisation, dense layers, and 
activations that ultimately led to the final output. The CNN's classification process was explained using layers like ReLu, 
Softmax, and Flatten, resulting in an output that classified the image into categories like Healthy, Nitrogen, Potassium, 
and Magnesium. Additionally, the conventional machine learning process employed a multiclass Support Vector 
Machine (SVM) with a one-against-all approach to generate the final output. 

 

 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Integrated Image Processing Workflow with Machine Learning and Deep Learning 
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2.2.2 Model Machine Learning Frameworks: Multiclass SVM (One Against All) Approaches 

According to Fig. 2, in machine learning workflow, after the dataset is loaded, it goes through a critical 
enhancement process known as data augmentation. This method, as described by [8], effectively increases the size of 
the training dataset by creating modified versions of existing images. This helps improve the overall performance of the 
model and reduces the risk of overfitting. Image data augmentation is implemented, specifically by applying a width 
shift. Nine augmented images are generated and displayed from a single original image. The images are saved to a 
designated output directory. When it comes to organised move images, the dataset is systematically split into separate 
batches or sets. This section transfers the initial 100 images from the nitrogen dataset batch to a different directory. 
Instead of dealing with a large batch, which can be quite demanding in terms of computation or time, a smaller subset 
is utilised for initial analysis or experimentation [9]. 

Matplotlib plots are displayed, and the CIFAR10 dataset has been loaded. The shapes of the data are also 
displayed. CIFAR-10 is widely utilised as a standard in the machine learning community for assessing and contrasting 
the effectiveness of various algorithms, particularly in image classification tasks [10]. Splitting data into training, 
validation, and test sets enables effective model training, fine-tuning of hyperparameters, and accurate evaluation of the 
final model, avoiding the risk of overfitting. Effective data preprocessing, including reshaping and normalisation, plays 
a crucial role in numerous algorithms. The data was resized to a 32x32 pixel dimension for processing. The Train-
Validation-Test split ratio was determined with careful consideration. The training dataset consisted of 1500 samples, 
while both the validation and test datasets were allocated 300 samples each. The training ratio was approximately 
71.43%, obtained by dividing the total number of training datasets by the sum of training, validation, and test datasets. 
Specifically, this was calculated as 1500 divided by 2100. The validation and testing ratios were both calculated to be 
14.29%. This was determined by dividing the total number of validation and test samples by the aggregate of 2100. The 
dataset was split into three parts, with a ratio of approximately 71.43% for the training set and 14.29% for both the 
validation and test sets. Applying preprocessing techniques, like subtracting the mean to normalise data, can enhance 
the convergence speed and performance of machine learning algorithms. This ensures data consistency and scale, as 
highlighted by [11]. Reshape the image data into rows to properly prepare it for model training. Modify datasets to 
ensure they meet the necessary requirements for model input. 

A naive implementation of the SVM loss is evaluated on a random set of weights [12]. In the realm of SVMs 
(Support Vector Machines), understanding the loss from random weights acts as a reference point, providing clarity on 
how the training process should evolve. Gradient computation, fundamental to machine learning models, undergoes a 
verification process termed gradient checking [13]. This step ensures that models trained using gradient-based 
optimisation techniques are learning correctly. Stochastic Gradient Descent (SGD), a pivotal optimisation algorithm, is 
employed for training. Stochastic Gradient Descent (SGD) is a widely used optimisation algorithm for training machine 
learning models, especially with large datasets [14]. Stochastic Gradient Descent (SGD) is applied to train a linear SVM 
classifier.  Hyperparameter tuning comes into play, helping find the optimal settings for learning [14]. Experiment with 
different hyperparameters to find the optimal configuration for the SVM model. Using the validation set, learning rates 
and regularisation strengths are tuned to find the best combination. Furthermore, distinct learning rates were set at 2e-
7, 3e-7, and 5, while regularisation strengths were chosen to be 5e3, 5e4, and 5. Visualisation tools, like heatmaps, assist 
in making sense of these hyperparameters, offering a comprehensive view of model performance across various 
configurations. Finally, the model is put to the test. The test set evaluation acts as an unbiased yardstick, simulating how 
the model would perform in real-world scenarios [14]. Evaluate the trained SVM model on a separate test set to assess 
generalisation performance. If test accuracy is achieved above 90%, it proceeds to the learned weights, and if it is below 
90%, it undergoes checking hyperparameter tuning. A confusion matrix for the predictions on the test set is displayed. 
Compute various performance metrics to evaluate the model. A detailed classification report is generated, which 
includes precision, recall, and F1 scores for each class. 
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Fig. 2: The Proposed Model Multiclass SVM (OAA) 
 

2.2.3 Multi-Model Deep Learning Frameworks: From CNN to Transfer Learning and Fine-Tuning Approaches 

According to Fig. 3, during the model-building phase, the CNN architecture is established by utilising 
convolutional layers to extract features from images, pooling layers for downsampling, and dense layers for 
classification with TensorFlow's Keras API. The model is compiled using an optimiser known for its efficiency [15]. 
This architecture employs the hierarchical pattern in data and constructs more complex patterns by utilising smaller and 
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simpler patterns.  The training phase closely monitors the performance metrics of both training and validation to ensure 
that overfitting is avoided. The model is trained using a designated batch size and number of epochs. Validation, a subset 
of the training data, helps in monitoring overfitting. It is an important aspect of the training process [16]. Keeping track 
of the accuracy and loss throughout the training process offers valuable insights into the model's progress.   

Finally, the model evaluation phase provides insights into the model's generalisation capabilities on unseen data. 
Post-training, the model's real-world utility is tested on unseen data. The model was assessed using the test data to 
determine its accuracy and loss. Predictions were made on the test data. Images from the test dataset were displayed 
alongside their predicted labels for visual assessment of the model's performance. A confusion matrix was created to 
analyse the model's performance across various classes. The model's performance was quantified by calculating and 
displaying accuracy, precision, recall, and F1 scores. A classification report was generated for a thorough evaluation.  
An important consideration is the specified accuracy criterion for the CNN, Transfer Learning model, and Fine-Tuning 
model. An accuracy threshold of 90% has been established for this study. The purpose of implementing this strict 
criterion is to ensure that the image classification model is not only functional but also highly reliable. 

The transfer Learning model includes foundational packages similar to those used in CNN, with a particular 
focus on TensorFlow for deep learning. Just like the CNN model, datasets are loaded, and their distributions are 
visualised. This step guarantees the quality and preparedness of the data. A Sequential model, which is a linear stack of 
layers, was established. A pre-trained model was incorporated as the foundation for feature extraction, with specific 
parameters like input shape, weights, and the top layers configured as non-trainable. A flattened layer was included to 
condense the features into a single dimension. A Batch Normalization layer was added to normalise the activations of 
the neurons. Classification layers with ReLU and Softmax activation functions were added. Ultimately, the model was 
compiled using the Adam optimiser and the sparse categorical cross-entropy loss function. Using this architecture, the 
model can fine-tune the weights based on the specific dataset, enhancing its performance. Model evaluation provides 
valuable insights into the performance of the model on unseen data, taking into account the combined knowledge from 
pre-trained weights and current data. 

The Fine-Tuning model methodology is a further development of the Transfer Learning approach. The initial 
steps are the same: a pre-trained model was incorporated as the foundation for feature extraction, with a designated input 
shape, and the upper layers were excluded. Additional layers were included to enhance the processing and classification 
capabilities. According to the specified requirements, certain layers were designated as trainable. The model was 
compiled, with careful consideration given to the loss function, optimiser, and metrics used for evaluation. According 
to [17], the process of fine-tuning involves not only the customisation of the top layers of the pre-trained model for the 
particular task at hand but also the rendering of certain deeper levels of the model that are trainable. A notable difference 
in this case, in contrast to Transfer Learning, is that specific layers of the pre-trained Fine-Tuning model can be adjusted 
to meet specific requirements, enabling greater customisation. This allows for a more precise fine-tuning of the pre-
trained model to match the unique attributes of the current dataset. This approach is commonly used when dealing with 
large datasets to avoid overfitting. Allowing deeper layers to be trainable can result in overfitting when working with 
smaller datasets [17].  After fine-tuning, the training and evaluation phases continue to be consistent, offering valuable 
insights into the model's performance. 
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Fig. 3: The Proposed Multi-Model Deep Learning (CNN, Transfer Learning and Fine-Tuning) 
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2.2.4 Performance Result from Confusion Matrix 

2.2.4.1 Accuracy 

The accuracy of a classifier is determined by calculating the ratio of correct predictions to the total number of 
samples. This is done by considering both True Positives (TP) and True Negatives (TN) and summing up all entries 
such as True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) in the confusion 
matrix. The assessment of the deep learning classifier's performance heavily depends on the accuracy metric, which is 
widely regarded as crucial. A way to summarise the outcome in the confusion matrix is by calculating accuracy, as 
shown in Equation 1. 
 
 
             (1) 
 
 
 
 
2.2.4.2 Precision 

Precision, also referred to as positive predictive value (PPV), is a metric that measures the number of samples 
that are correctly classified as positive out of all the samples that are predicted as positive. Precision is employed as a 
performance metric in situations where the objective is to minimise the number of false positives. Ensuring a low rate 
of false positives, or high precision, is a crucial aspect of the model; in other words, precision refers to the possibility of 
correctly identifying a positive outcome among all the instances that were predicted as positive according to Equation 
2. 
 
 
 
             (2) 
 
 
 
2.2.4.3 Recall 

In contrast, recall measures the number of positive samples that are correctly identified by positive predictions. 
The recall metric is employed in situations where the objective is to correctly identify all positive samples, thereby 
minimising the occurrence of false negatives. To enhance the recall metric, it is essential to reduce the occurrence of 
False Negatives. Recall also referred to as sensitivity, hit rate, or True Positive Rate (TPR), can be denoted by various 
alternative terms. The calculation of recall can be derived from Equation 3: 
 
 
 
 
            (3) 
 
2.2.4.4 F1 Score 

The comprehensive evaluation of precision and recall is crucial, as focusing only on either measure fails to offer 
a complete understanding of the situation. One method for summarising them is through the use of the f-score or f-
measure, which calculates the harmonic mean of precision and recall. The F1 Score can be mathematically represented 
as Equation 4: 
 
 
            (4) 

 

Accuracy (%) =  TP+TN
TP+TN+FP+FN

 × 100%   

Precision =  
TP

TP + FP
 

Recall =  
TP

TP + FN
 

F1 Score =  2 × Precision ×Recall
Precision+Recall

  



Nur Ain Najwa Mohd Adib et al. Malays. J. Bioeng. Technol. Vol. 1, No. 1, (2024): 48-65 

 

56 
eISSN Number: 3036-017X © 2024 

UMK Press. All rights reserved 

3. Results and Discussions  
3.1 Image Datasets 

The image dataset recorded various categories of nutrient deficiencies throughout a six-month time frame. The 
dataset contained a total of 868 images. Out of these, there were 586 images of healthy oil palm seedlings, 175 images 
of nitrogen deficiencies, 42 images of potassium deficiencies, and 65 images of magnesium deficiencies. 

 
3.2 Classification of Nutrient Deficiency in Oil Palm Seedling Leaves Using Machine Learning Techniques 
 

The presented Fig. 4 showcases two plots illustrating the performance of a Multiclass SVM in the task of 
classifying nutrient deficiencies in oil palm seedling leaves. The top graph pertains to the model's training accuracy, 
while the bottom one relates to its validation accuracy. Nutrient Deficiencies training accuracy suggests that the top 
graph visualises the accuracy of a model trained to predict nutrient deficiencies based on various combinations of 
hyperparameters during its training phase. Nutrient Deficiencies validation accuracy suggests that the bottom graph 
shows how well the model performs on new, unseen data (validation data) with the same hyperparameters. The 
performance of the SVM model can differ based on various combinations of two hyperparameters, such as the learning 
rate and regularisation strength. The graph displays logarithmic values on both the x-axis and y-axis. The top graph 
shows red dots with a high level of accuracy, approaching 0.99. Similarly, the bottom graph displays red dots with an 
accuracy of 0.82, as indicated by the colour bar on the right side of each graph. Blue dots are indicative of reduced 
accuracy. Orange dots fall in between the blue and red dots, indicating a moderate level of accuracy. 

The model's accuracy seems to fluctuate depending on the combination of the learning rate and regularisation 
strength. In the training accuracy graph (top), as it moves from left to right, the model's accuracy shows a slight increase 
with more red dots towards the right. It appears that using higher learning rates could be advantageous for this specific 
task. Nevertheless, the validation accuracy (bottom) does not exhibit a distinct pattern with the learning rate. It appears 
that using higher learning rates can be advantageous during training, but it may not necessarily result in improved 
generalisation of unseen data. The presence of red dots on the y-axis indicates that a variety of regularisation values can 
yield strong training accuracies. Nevertheless, when it comes to validation, the red dots representing higher accuracies 
appear to be closely grouped together, suggesting that superior generalisation is achieved only with certain regularisation 
strengths. It appears that some combinations of these hyperparameters do not produce optimal results, as indicated by 
the presence of blue and orange dots mixed in with the red dots. To summarise, certain combinations of learning rates 
and regularisation strengths can result in high training accuracies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 4: Multiclass SVM Graph 
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3.3 Classification of Nutrient Deficiency in Oil Palm Seedling Leaves Using Deep Learning Techniques 

The nutrient deficiency classification in oil palm seedlings has been conducted using advanced techniques such 
as transfer learning and fine-tuning of pre-trained CNN models. The accuracy and loss values in the training and 
validation process were depicted for each of the CNN, transfer learning, and fine-tuning models. These graphs-based 
Fig. 5 depicts the accuracy and loss metrics for both training and validation. 

The CNN model rapidly converges to a minimal loss and high accuracy, indicating effective learning and the 
appropriateness of the model architecture and training strategy. Despite achieving 100% accuracy on training data, the 
model does not seem overfitting since the validation accuracy is also high, and the validation loss is consistently 
decreasing. The model seems to generalise well to unseen data, as evidenced by high validation and test accuracies [18]. 
Since the model reaches 100% training accuracy and very low training loss quite early, around epoch 14, one could 
potentially employ early stopping to halt the training process and save computational resources. This CNN model has 
demonstrated remarkable learning capability, generalisation, and reliability, showing low loss and high accuracy on 
training, validation, and test datasets. 

While both the Transfer Learning models and Fine-Tuning models perform well, there are distinct differences 
in their learning behaviours. Transfer Learning is more time-efficient, showing faster convergence and requiring less 
computational resources, which is evident from the shorter epoch times. Fine Tuning is computationally more expensive 
and takes more time per epoch, but it might be a better choice when striving for the best possible performance and when 
computational resources are not a limiting factor [19]. The high validation and test accuracies in both methods suggest 
that both models generalise well to unseen data. However, overfitting should be monitored, especially considering that 
the training accuracy reached 1 in both methods. Fine Tuning might be more adaptable to the specifics of the given 
dataset due to the adjustment of more parameters in the network, as suggested by the marginally better test accuracy. 
Transfer Learning is more rigid but provides quick and efficient solutions with relatively less risk of overfitting, given 
the small dataset scenario [20]. In practical scenarios, the choice between Transfer Learning and Fine Tuning often 
depends on the availability of computational resources, the size and specificity of the dataset, and the required model 
performance [21]. Transfer learning is often preferable when there is a lack of computational power or when dealing 
with small datasets due to its efficiency and reduced risk of overfitting. In contrast, fine-tuning can be more suitable 
when the dataset is large and varied and the aim is to achieve the highest performance possible. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 5: Classification Using Deep Learning Models [22; 23; 24; 25; 26; 27] 

VGG16 (FT) 

 

VGG16 (TL) 

VGG19 (FT) 

 

VGG19 (TL) 

 



Nur Ain Najwa Mohd Adib et al. Malays. J. Bioeng. Technol. Vol. 1, No. 1, (2024): 48-65 

 

58 
eISSN Number: 3036-017X © 2024 

UMK Press. All rights reserved 

…continue Fig. 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

InceptionV3 (FT) 
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…continue Fig. 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       

3.4 Assessing the Efficacy of Multiclass SVM (Machine Learning) for Nutrient Deficiency Detection in Oil 
Palm Seedlings: A Confusion Matrix Approach 

The Multiclass SVM model shows strong performance, particularly in identifying true negatives across all 
classes. This means it is generally good at identifying when a specific deficiency is not present. The false negatives, 
especially in the nitrogen deficiency class, suggest that the model might sometimes fail to diagnose this condition. This 
is crucial as it might lead to a lack of treatment. While false positives can lead to unnecessary treatment, false negatives 
are more critical as they result in a lack of treatment [28]. The model seems to balance these well, but improvements in 
reducing false negatives, particularly in Nitrogen deficiency, could be beneficial. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6: Confusion Matrix of Multiclass SVM 
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3.5 Confusion Matrix Analysis of CNN's Capability in Nutrient Deficiency Classification for Oil Palm 
Seedlings 

According to Fig. 7, the CNN model has demonstrated strong classification abilities across all four classes. The 
absence of FPs and FNs for Potassium and Magnesium deficiencies suggests that the model has distinct and well-
segmented features for these conditions, allowing for precise classification. For the Healthy class, the model has shown 
high accuracy but with a small number of FP, indicating some confusion with Nitrogen deficiency. The FN for the 
Healthy class is minimal, which is favourable for a classification model since it reduces the risk of missing a diagnosis. 
The Nitrogen deficiency class, with a few more FN, indicates a challenge for the model in differentiating between 
Healthy and Nitrogen-deficient cases. However, the very low FP rate is a strong point, suggesting that when the model 
predicts Nitrogen deficiency, it is likely to be correct. Overall, CNN has shown robust performance, particularly in the 
Potassium and Magnesium deficiency classes, where it has achieved perfect classification. The performance on the 
Healthy and Nitrogen deficiency classes is also commendable, though with slight room for improvement in reducing 
FN. 

 

 

 

 

 

 

 

 

 

Fig. 7: Confusion Matrix of CNN Model 

3.6 Comparative Confusion Matrix Analysis of Transfer Learning and Fine-Tuned Models in Nutrient 
Deficiency Detection in Oil Palm Seedlings 

Fig. 8 and 9 presented a comparative analysis of the performance of various pre-trained convolutional neural 
network models applied to a classification task with two different approaches: Transfer Learning (TL) and fine tuning 
(FT). The metrics provided are the number of True Positives (TP), False Positives (FP), False Negatives (FN), and True 
Negatives (TN) for each model across four classes: Healthy, Nitrogen deficiency, Potassium deficiency, and Magnesium 
deficiency. 

 
According to Fig. 8, VGG16 and VGG19 (TL) models show a somewhat lower performance for the Healthy 

and Nitrogen classes compared to others, as indicated by higher FP and FN rates. VGG19, in particular, has the highest 
FP rate for the Healthy class. InceptionV3 (TL) showed a balanced performance with relatively low FP and FN across 
classes but with slight misclassifications in the Potassium and Magnesium classes. InceptionResNetV2 (TL) is similar 
to InceptionV3 but with slightly higher FP rates for Potassium and Healthy classes. ResNet152V2 (TL) excels in the 
Healthy class with no FP and a high TN rate but has some misclassifications in the Nitrogen and Potassium classes. 
DenseNet201 (TL) has a strong performance, especially in the Healthy class with high TN and no FN, but shows a slight 
increase in FP for Potassium. Xception (TL) is similar to DenseNet201, as it performs well across all classes with very 
few misclassifications. 

 

  

CNN 
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Fig. 8: Confusion Matrix of Transfer Learning Pre-Trained Models 
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Fig. 9: Confusion Matrix of Fine Tuning Pre-Trained Models 
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3.7 Comprehensive Model Evaluation 

In reviewing the performance of machine learning and deep learning models for the classification of nutrient 
deficiency in oil palm seedling leaves, the provided data from Fig. 10 allows for an insightful analysis. The Multiclass 
SVM exhibits a high performance with an accuracy of 95.33%, precision of 0.957283, recall of 0.953333, and F1 score 
of 0.953333, taking 13 seconds to produce test results. This indicates that SVM is quite reliable, though not the fastest. 
The CNN model outperforms the SVM slightly in terms of accuracy (95.80%), precision (0.959653), recall (0.958042), 
and F1 score (0.957777), and it is notably the fastest with a test time of only 1 second, making it particularly suitable 
for real-time applications. The Multiclass SVM and CNN models exhibit high performance across all metrics, with the 
CNN slightly outperforming the SVM. The CNN is particularly notable for its speed, being the fastest among all models, 
which is beneficial for real-time applications. 

Among the Transfer Learning (TL) models, VGG16 (TL) shows lower accuracy (92.31%) and F1 score 
(0.922058) than other models, taking 23 seconds for testing. VGG19 (TL) further lowers in accuracy (91.61%) with an 
F1 score of 0.913625 and the longest test time of 31 seconds, indicating it may be the least suited for this task within 
the TL group. InceptionV3 (TL) has better metrics with an accuracy of 93.71%, an F1 score of 0.936796, and a moderate 
test time of 6 seconds. InceptionResNetV2 (TL) drops in accuracy (89.51%) and F1 score (0.893612) and takes 10 
seconds to complete testing. ResNet152V2 (TL) stands out in the TL category with the highest accuracy (97.90%) and 
F1 score (0.978971), albeit with a longer test time of 21 seconds. DenseNet201 (TL) offers a high accuracy of 96.50% 
and an F1 score of 0.96485, taking 13 seconds for test results. Xception (TL) has an accuracy of 94.41% and an F1 score 
of 0.94375, with test results in 9 seconds. Among the Transfer Learning (TL) models, ResNet152V2 (TL) stands out 
with the highest accuracy and F1 score, suggesting superior performance in both predicting the correct class and 
maintaining a balance between precision and recall. However, it is also one of the slower TL models. VGG16 (TL) and 
VGG19 (TL) show lower performance metrics compared to other models, indicating less suitability for this specific 
task. 

 
Fine-tuning (FT) models generally improve upon TL models. VGG16 (FT), ResNet152V2 (FT), DenseNet201 

(FT), and Xception (FT) all achieve very high accuracy and F1 scores of 98.60% and 0.986041, respectively, but with 
varying test times (26, 23, 12, and 10 seconds, respectively). VGG19 (FT) has a slightly lower accuracy of 97.20% with 
an F1 score of 0.972005 and a test time of 27 seconds. InceptionV3 (FT) also achieves high accuracy (97.90%) with an 
F1 score of 0.979093, impressively with the lowest test time of 4 seconds among the FT models, making it highly 
efficient. InceptionResNetV2 (FT) records an accuracy of 93.71% and an F1 score of 0.93648, taking 10 seconds for 
testing. Fine-tuning (FT) models generally show improved performance over their TL counterparts, with VGG16 (FT), 
ResNet152V2 (FT), DenseNet201 (FT), and Xception (FT) all achieving the same high accuracy, precision, recall, and 
F1 scores. This indicates that fine-tuning has effectively adapted these models to the specific features of nutrient 
deficiency in oil palm seedling leaves. 

 
It is also evident that fine-tuning can significantly enhance the precision and recall, as demonstrated by the 

similar high F1 scores of the VGG16 (FT) and ResNet152V2 (FT) models, which are perfect or near-perfect. This 
indicates that fine-tuning the models on the specific domain of the dataset reduces false positives and false negatives, 
crucial for accurate diagnosis in agricultural applications. In terms of time efficiency, the fine-tuned InceptionV3 (FT) 
model is particularly impressive, combining high accuracy with the lowest test time among the fine-tuned models. This 
suggests that this model could offer a good trade-off between speed and performance for real-world applications where 
both accuracy and quick results are necessary. 

 
In conclusion, the choice of model would depend on the specific requirements of the application. If speed is 

crucial, a CNN or an InceptionV3 (FT) might be the best choice. For the best balance between accuracy and 
computational time, ResNet152V2 (TL) and DenseNet201 (FT) emerge as strong candidates. However, for applications 
where the highest possible accuracy is required, and computational resources and time are less of a concern, fine-tuned 
models such as VGG16 (FT), ResNet152V2 (FT), DenseNet201 (FT), and Xception (FT) should be considered. 
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Fig. 10: Comparative Analysis of Model Performance on Classification Task 

4. Conclusion 

In conclusion, the research highlights the potential of machine learning and deep learning techniques in 
classifying nutrient deficiencies in oil palm seedling leaves. Deep learning models, particularly the fine-tuned ones, have 
proven to be highly effective in terms of accuracy and precision. Nevertheless, there is a balance between the complexity 
of these models and the amount of time they require for computation. This aspect indicates that choosing the most 
appropriate model depends on the specific priorities, whether it is achieving fast results or ensuring high accuracy. 
Overall, this research has made notable progress in highlighting the intricacies of oil palm seedling cultivation and its 
interactions with NPK fertilisers while also utilising technological advancements for accurate nutrient deficiency 
classifications. Future research could explore the long-term effects of these treatments and investigate whether the initial 
variations observed have an impact on the overall plant yields as they mature. Further research and optimisation of these 
models can potentially reveal more advanced solutions, focusing on accuracy and time efficiency in detecting nutrient 
deficiencies. This will promote a more sustainable approach to oil palm cultivation and support the overall goals of the 
National Key Economic Areas (NKEA), which aim to ensure the long-term and economically viable growth of the oil 
palm industry in response to increasing global demand. 
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